

Mabanaft GmbH & Co. KG | Sustainable Fuels

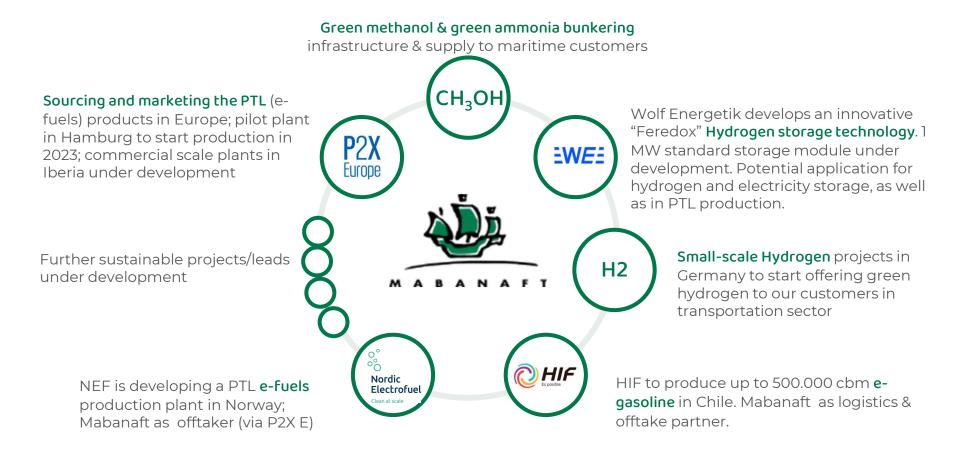
eSAF: Co-processing & free allocation

Oleksandr Siromakha, Head of Sustainable Fuels – <u>oleksandr.siromakha@mabanaft.com</u>

Mabanaft Group snapshot

Global presence with roots in Germany and core activities in north-west Europe >>>

1. Germany, Hungary and Denmark

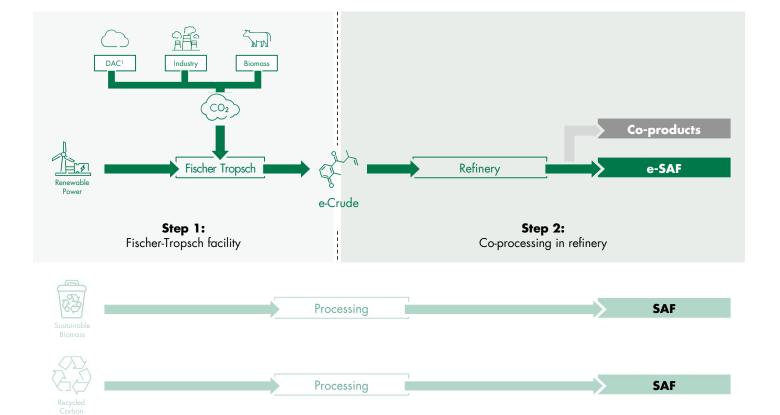

Mabanaft | Sustainable Fuels | eSAF Co-Processing

Page 2

Sustainable fuels focus & project pipeline

ReFuel Aviation

Year	ReFuel Aviation*	
	Minimum share of SAF (in %)	E-Fuel Sub-target
2025	2%	-
2030	6%	Min. 0,7% (an average share over the period of 1.2%)
2031	6%	Min. 0,7% (an average share over the period of 1.2%)
2032	6%	Min. 1.2% (an average share over the period of 2.0%)
2033	6%	Min. 1.2% (an average share over the period of 2.0%)
2034	6%	Min. 2.0% (an average share over the period of 2.0%)
2035	20%	5%
2040	34%	10%
2045	42%	15%
2050	70%	35%


The legislation will oblige:

Aircraft fuel suppliers at EU airports to

gradually increase the share of sustainable fuels (inc. SynFuels) that they distribute.

*Source: https://www.consilium.europa.eu/en/infographics/fit-for-55-refueleu-and-fueleu/ $$\mathsf{Page}\,4$$

Fischer-Tropsch synthesis (FTS) is the most mature pathway for e-SAF production today, but produces e-Crude as an intermediate

Mabanaft | Sustainable Fuels | eSAF Co-Processing

Page 5

С

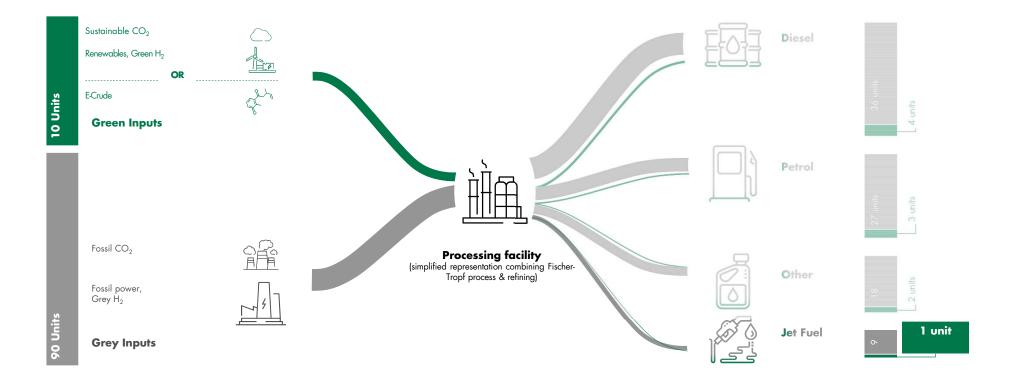
It's not commercially feasible to refine e-Crude in the same FTS facility and must be done in conventional refineries (co-processing)

The Fischer-Tropsch synthesis for e-SAF is **not yet quite mature** to be deployed at commercial scale¹

The average size of first planned RFNBO FT e-SAF plants is **10-50 ktpa e-Crude** Average refinery capacities are ~200-500 times the e-Crude output

 this makes integrating greenfield refineries into RFNBO FT e-SAF plants of this scale commercially unfeasible As a result, first RFNBO (FT e-SAF) plants will not be of sufficient scale to produce finished products,

... instead they will generate intermediates (e-Crude) that need to be further processed


Converted brownfield facilities, co-processing of intermediates in existing refineries must be a core part of the supply solution

1 Technology Readiness Level (TRL) 5-6 of 9 as per the International Energy Agency (IEA)

D

Processing e-Crudes to e-SAF is a bottleneck due to unclear regulations and must be unblocked to accelerate the e-SAF ramp-up

Conventional refineries (brownfield) need addn'l regulatory support for flexible allocation of 'green credits' to allow a gradual transition

E

Proposal for potential wording for a supplemental document

"In the case of Fischer-Tropsch facilities co-processing renewable and nonrenewable inputs in a common process, the share of renewable output as well as the greenhouse gas emission intensity of the renewable and nonrenewable output should be determined by an approved flexible attributional Life-Cycle-Assessment (LCA) approach (i.e. in a situation where fuels are produced in an integrated process with multiple other co-products (fuels and non-fuels), the renewable input as well as the greenhouse gas emissions can selectively be allocated and attributed to a specific product or products)."

Е

Why is this important?

The proposed change is crucial for various reasons...

F

To fully exploit RFNBO use for Aviation & Maritime sectors

limited RFNBO production today; without free allocation, we add further bottlenecks towards producing green fuels from 1 unit of RFNBO FT e-Crude

For efficiency benefits of co-processing in existing refineries

co-processing in a local refinery instead of transporting to scarce dedicated processing plants provides cost- and CO_2 savings for end-consumers

To spur transition of brownfield refineries

each 10 units of RFNBO e-Crude replace 10 units of fossil crude that would otherwise be used in a refinery, thus saving CO_2

G

A broad allowance for flexible allocation comes with risks - it should be restricted to narrow application scenarios

Finite duration

... allowing flexible allocation until dedicated processing becomes available (e.g. first refineries fully switched to renewable feedstocks)

\sum

Sunset date

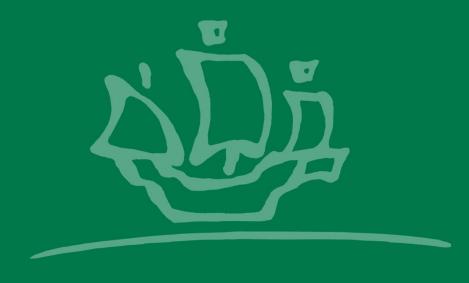
... only for FT facilities taken into operation before 2035, allowing step-by-step scale up approach for innovative FT producers

Use of FTS technology in two ways

... in a few existing commercial-scale FT facilities globally,

where green inputs must be co-processed with grey inputs

... in newly built FT plants, which initially will be too small to produce the finished products (e-SAF)



Executive summary

- A To meet the EU's climate objectives 70% of all aviation fuel¹ should be SAF, e-SAF should contribute >35% (ca. 18 Mt/ by 2050)
- **B** *Fischer-Tropsch synthesis* (FTS) is the only mature pathway for e-SAF production today², but produces e-Crude as an intermediate
- C It's not commercially feasible to refine e-Crude in the same FTS facility⁴ and must be done in conventional refineries (co-processing)
- **D** Processing e-Crudes to e-SAF is a bottleneck³ due to **unclear regulations** and must be unblocked to accelerate the e-SAF ramp-up
- E Conventional refineries (brownfield) need additional regulatory support for flexible allocation of 'green credits' to allow a gradual transition
- F Co-processing in existing refineries is the most efficient way to refine e-Crude into eSAF, subject to free allocation
- G A broad allowance for flexible allocation comes with risks it should be restricted to narrow application scenarios⁵

1 for flights departing from EU airports 2 which synthesizes green Hydrogen and biogenic CO₂ to an *intermediate e-Crude* (synthetic hydrocarbon), which must then be *refined to make e-SAF to blend* with jet fuel 3 A handful of large-scale prototypes and small demonstration plants (~0.02 Mt in 2023) exist today 4 Due to the relatively small operational scale of FTS today (~10-50 ktpa) 5 e.g., finite durations, sunset dates, selective technologies, companies adhering to a certified emissions-reduction roadmaps

Mabanaft – fuelling tomorrow.

www.mabanaft.com