

Aviation Initiative for Renewable Energy in Germany e.V.

Unsere Ziele bis 2030

Forschung & Entwicklung
Bau und Betrieb einer PtL-Forschungs-,
Technologie- und Demonstrationsplattform in
Deutschland

Beginnende Industrialisierung
Betrieb mind. einer kommerziellen SAFProduktionsanlage in Deutschland

SAF-Quoten Quote für nachhaltige, regenerative Flugkraftstoffe

2026: 2 %

2028: 5 %

2030: 10 %

62 Mitglieder

Aviation Initiative for Renewable Energy in Germany e.V.

AIRBUS	Austro Engine	AVIALLIANCE	Aviation Fuel Projects Consulting	Bauhaus Luftfahrt Neue Wege.	()_BOEING	bp	Die Senatorin für Wirtschaft. Häfen und Transformation Hären und Transformation Bremen	CAPHENIA Turning CO, into fuel	CONTINENTAL AEROSPACE TECHNOLOGIES
DEKRA	DEUTSCHE AIRCRAFT	LUFTHANSA GROUP	Group	DLR	EDL PÖRNER GRUPPE	<u>© eFUEL</u>	Emirates	Eine Energie voraus	EY
ETERNAL POOWER	FBB BERLIN BRANDENBURG	Fraunhofer	Greenlyte	GRIESEMANN	Hamburg Behörde für Wirtschaft	HALTERMANN CARLESS	►► UHASSELT	HESSEN Hessisches Ministerium für Wirtschaft, Energie, Verkehr, Wohnen und ländlichen Raum	© HIF
THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學 DEPARTMENT OF LOGSTICS AND MARITIME STUDIES	☐ HORVÁTH	hynamics	DIC	ISCC International Sustainability 6 Carbon Certification	INSTITUT FÜR UMWELTTECHNIK UND ENERGIEWIRTSCHAFT	JÜLICH Forschungszentrum	Karlsruher Institut für Technologie	KITEDYNAMICS	atalysis ষ্ট্র
MB Energy Our energy, your way	McKinsey & Company	MTU Aero Engines		Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz	NESTE	norsk e-fuel	→ OMV	PCK	PtXLabi
pwc	BRAATHENS RENAVIA	ROLLS	RWE	Spack e-fuels	SYNTHEC FUELS	PROFESSUR FÜR REAKTIONSTECHNIK	Thorsten Luft Beratung für Treibstoffmanagement und Sustainable Aviation Fuels	TotalEnergies	uni per

WIWeB ZAFFRA

Cooperation Agreements

Memberships

Arbeitskreise und Task Force

Aviation Initiative for Renewable Energy in Germany e.V.

Unser Vorstand

Sechs Vorstandsmitglieder

Beirat

Beiratsmitglieder aus Forschung, Wirtschaft und Politik

Siegfried Knecht Vorsitzender des Vorstands

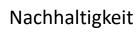
Uwe GaudigStellv. Vorsitzender des
Vorstands

Bestehend aus dem Vorstand und den Vorsitzenden der Arbeitskreise Rechnungsprüfer und Geschäftsstelle

Prof. Dr.-Ing. Martin Kaltschmitt Stellv. Vorsitzender des Vorstands

Melanie Form Mitglied des Vorstands Geschäftsführerin

Prof. Dr.-Ing. Manfred
Aigner
Präsident Wissenschaft
und Forschung


Prof. Dr.
Jürgen Ringbeck
Präsident Industrie und
Luftfahrt

Rohstoffe und Technologien

Qualität, Zulassung und Nutzung

Task-Force Ökonomie und Produktion

Unsere Satzung

Arbeitskreise und Task Force

Rohstoffe und Technologien

Herstellungsoptionen nachhaltiger

Flugkraftstoffe und technischer

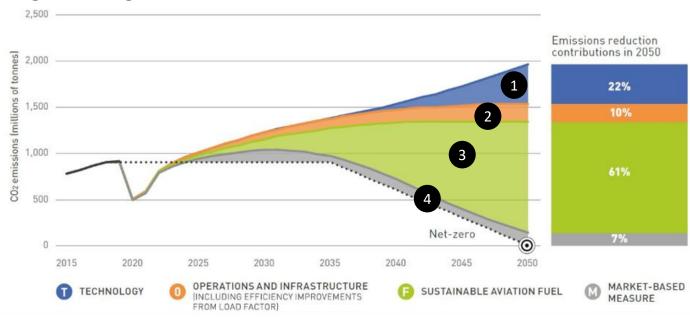
Innovation

Qualität, Zulassung und Nutzung
Anwendung nachhaltiger
Flugkraftstoffe

Nachhaltigkeit
Ökologie, Ökonomie und soziale
Verträglichkeit der gesamten
Wertschöpfungskette

Task-Force Ökonomie und
Produktion
Vermarktung und Herstellung
nachhaltiger Flugkraftstoffe

Klimaschutzplan der internationalen Luftfahrt bei großem Wachstum

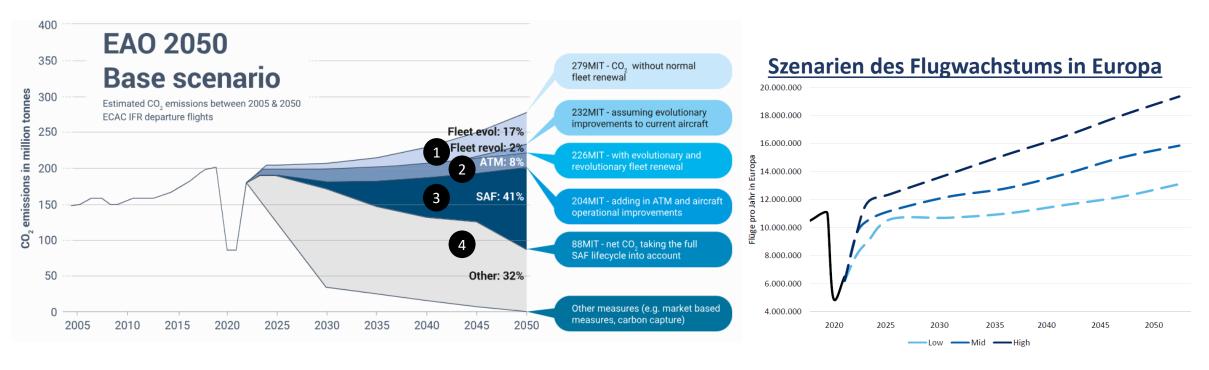


Wachstum bis 2050: Die ICAO geht von einer **Verdopplung bis Verdreifachung** der Revenue Passenger Kilometers (RPK) bis zum Jahr 2050 aus.

→ mindestens Verdopplung der Klimawirkung sofern keine Maßnahmen ergriffen werden.

- 1. Technologie: Technologische Verbesserungen und dem Einsatz von Luftfahrzeugen mit hybriden und elektrischem Antrieb vornehmlich auf der Kurzstrecke ab den Jahren 2035 bis 2040.
- **2. Betrieb und Infrastruktur:** Wesentliche Investitionen in die Effizienz des Betriebs und der Infrastruktur.
- **3. SAF:** Den größten Beitrag sollen nachhaltige Flugkraftstoffe darstellen. Im Jahr 2050 sollen 90 % des Treibstoffs durch SAF ersetzt sein, das jeweils 100 % Emissionen einspart.

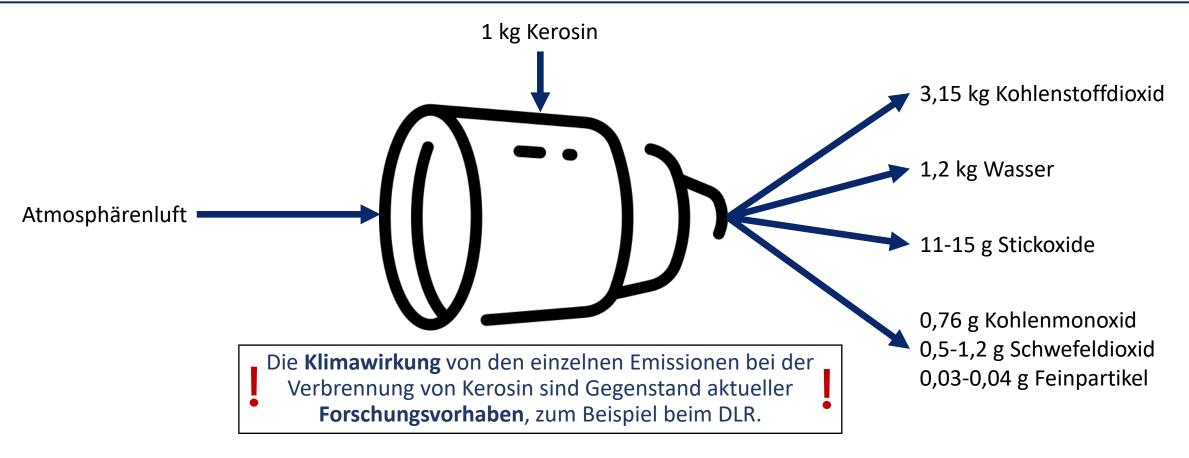
Möglicher Weg zur Klimaneutralität bis 2050 aus Sicht der Luftfahrtindustrie:


Anteile der unterschiedlichen Maßnahmen auf dem Weg zur Klimaneutralität der Luftfahrt

4. Marktbasierte Maßnahmen: Die von den vorherigen drei Bereichen nicht verhinderten Emissionen werden durch Kompensation ausgeglichen.

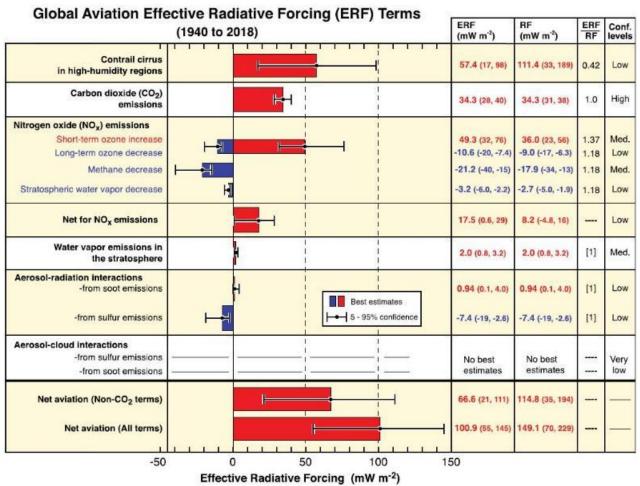
Quelle: ATAG (2021): Waypoint 2050.

Klimaschutzplan der europäischen Luftfahrt bei großem Wachstum



- 1. Einsparmaßnahmen durch die Erneuerung der Flugzeugflotten mit jeweils modernen Flugzeugmustern und die Effizienzverbesserung gegenüber der heutigen Technologie, Einsparpotential: 53 Millionen Tonnen CO₂
- **2.** Einsparmaßnahmen durch Effizienzsteigerung im Bereich des Betriebs und der Infrastruktur, Einsparpotential: 24 Millionen Tonnen CO₂
- 3. Einsparmaßnahmen durch die Nutzung von SAF, Einsparpotential: 116 Millionen Tonnen CO₂
- **4.** Weitere Einsparmaßnahmen durch marktbasierte Maßnahmen oder CO₂-Abscheidung und Speicherung, Einsparpotential: 88 Millionen Tonnen CO₂

Emissionen bei der Verbrennung von Kerosin


BAZL (2020): CO2-Emissionen des Luftverkehrs: Grundsätzliches und Zahlen. Lee et al., Atmos. Environ., https://doi.org/10.1016/j.atmosenv.2020.117834, 2020

Nicht-CO₂-Effekte

- Neben CO₂ werden weitere klimawirksame Stoffe emittiert
- Dazu zählen in großer Höhe ausgestoßener Wasserdampf, Rußpartikel, Sulfat-Partikel und Stickoxide
- Deren teils komplexe Wechselwirkung und die daraus resultierende Klimawirkung sind Gegenstand aktueller Forschung
- Etwa **2/3 der Gesamtklimawirkung** der Luftfahrt entfallen auf **Nicht-CO₂-Effekte**
- Klicken Sie <u>hier</u> für weiterführende Informationen zu Nicht-CO₂-Effekten

SAF verbrennen sauberer als fossiles Kerosin und reduzieren somit auch Nicht-CO₂-Effekte.

Einfluss klimawirksamer Emissionen. In rot wärmende und in blau kühlende Effekte unter Angabe von Konfidenzintervallen. 1

Warum SAF zur Reduzierung der Klimawirkung? ☐ ☐ 은 ᢓ

Geringere THG-Emissionen

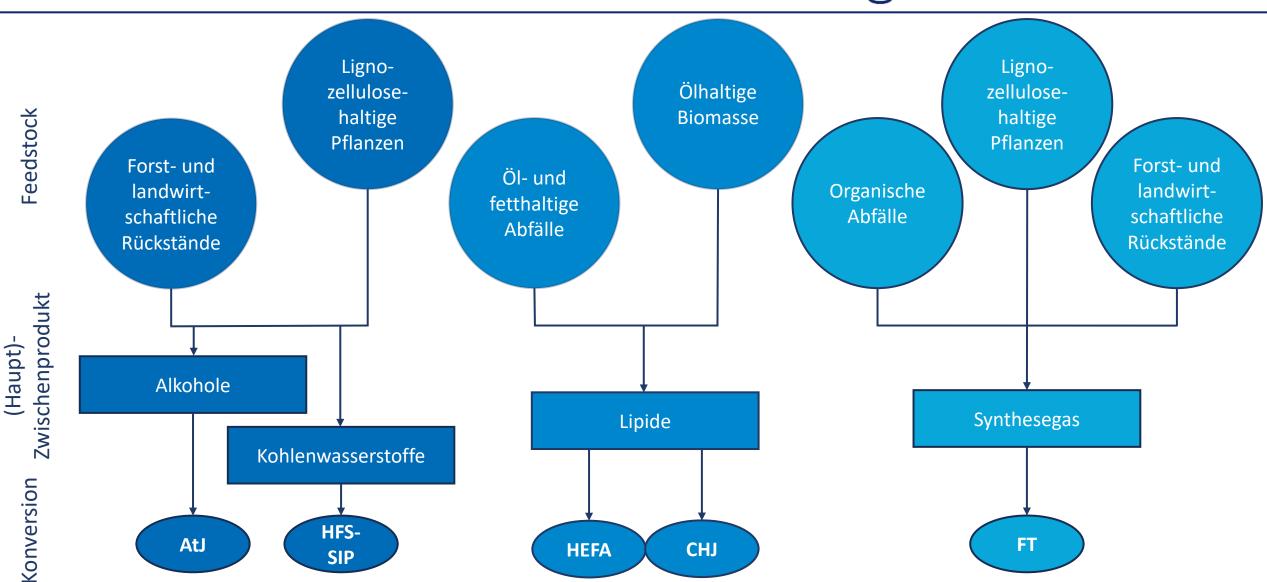
- Schon heute bei HEFA-SAF bis zu 80 % weniger THG-Emissionen verglichen mit fossilem Kerosin
- Bei strombasierten SAF potentiell bis zu 100 % CO₂-Emissionsminderung

Reduktion von Nicht-CO₂-Effekten

- Resultieren aus der Bildung von Rußpartikeln und weiteren klimawirksamen Stoffen
- SAF verbrennen sauberer unter verringerter Bildung von Partikeln

Alternativlosigkeit SAF

- Andere klimafreundliche Antriebe (Elektro/Wasserstoff) stehen frühestens ab 2030 zur Verfügung
- Dauer des Markthochlaufs sehr hoch auf Grund der Nutzungsdauer von Flugzeugen


Drop-in Lösung

- Keine Anpassung der Triebwerke und Tankinfrastruktur notwendig
- Heute kommerziell erhältlich und in Verwendung
- Bereits zugelassen in Beimischung bis 50 %

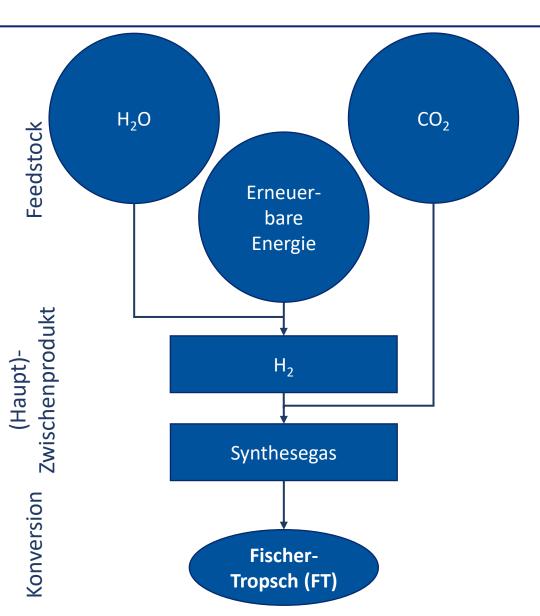
Biogene SAF-Herstellungspfade

AtJ: Alcohol to Jet, HFS-SIP: Hydroprocessed Fermented Sugars to Synthetic Isoparaffins, CHJ: Catalyctic Hydrothermolysis Jet, HEFA: Hydroprocessed Esters and Fatty Acids,

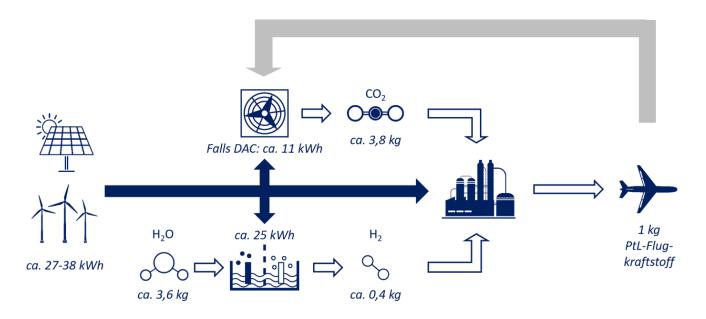
FT: Fischer-Tropsch

12

Übersicht zugelassener SAF


ASTM	Anhang	Zulassung	Verfahren	Beimischungsgrenze	Mögliche Rohstoffe	Anbieter
D7566	1	2009	FT-SPK	50 Vol%	Flexibel (biogen, fossil, synthetisch, z.B. PtL oder BtL)	Velocys, Sasol, Shell
D7566	2	2011	HEFA-SPK	50 Vol%	Fette/Öle (z. B. Pflanzenöle, Altspeiseöl)	UOP, Neste
D7566	3	2014	HFS-SIP	10 Vol%	Zucker, Stärke, Lignocellulose	Amyris
D7566	4	2015	FT-SPK/A	50 Vol%	Flexibel (biogen, fossil, synthetisch, z. B. PtL oder BtL)	Sasol
D7566	5	2016	ATJ-SPK	50 Vol%	Zucker, Stärke, Lignocellulose	Gevo, Cobalt
D7566	6	2020	CH-SK	50 Vol%	Fette/Öle (z. B. Pflanzenöle, Altspeiseöl)	ARA
D7566	7	2020	HC-HEFA-SPK	10 Vol%	Fette/Öle (Algenöl)	IHI
D7566	8	2023	ATJ-SKA	50 Vol%	Zucker, Stärke	Swedish BioFuels, Byogy
D1655	1	2018	Co-Processing	5 Vol%	Fette/Öle (z. B. Pflanzenöle, Altspeiseöl)	
D1655	1	2020	Co-Processing	5 Vol%	FT-Biocrude (primäre Rohstoffe siehe FT-SPK, FT-SPK/A)	
D1655	1	2023	Co-Processing	10 Vol%	Hydrodesulfurierte Biomasse	

ATJ-SPK (Alcohol to Jet Synthetic Paraffinic Kerosene), ATJ-SKA (Alcohol to Jet Synthetic Paraffinic Kerosene with Aromatics), CH-SK (Catalytic Hydrothermolysis Synthesized Kerosene), FT (Fischer-Tropsch), HC (Hydrocarbons), HEFA (Hydroprocessed Esters and Fatty Acids), HFS-SIP (Hydroprocessed Fermented Sugars to Synthetic Isoparaffins), PtL (Power-to-Liquid), SPK (Synthetic Paraffinic Kerosene), SPK/A (Synthetic Paraffinic Kerosene with Aromatics)


Neben **biogenen SAF** und **strombasierten SAF** gibt es die Möglichkeit diese Pfade zu kombinieren. Diese SAF werden **hybride SAF** genannt.

Strombasierte SAF – Power to Liquid (PtL)

Quantitative Übersicht benötigter Rohstoffe im PtL-Herstellungsprozess:

Rohstoffbedarf für Durchführung aller innerdeutschen Flüge mit PtL:

- Bedarf von etwa 700.000 Tonnen Kerosin (Vergleichsjahr 2019)
- Mind. 19.000 GWh erneuerbare Energie -> 750 bis 2.500 Windenergieanlagen
- 2,7 Millionen Tonnen biogenes CO₂ -> Potential von CO₂-Abscheidung von ca. 13 Millionen Tonnen aus Biogas-, Biomethan- und Bioethanolproduktion in Deutschland

Strombasierte SAF – Power to Liquid (PtL)

Stärken:

- → Zulassung für die Nutzung in allen Flugzeugmustern liegt vor
- → Beimischung zu konventionellem Kerosin ohne weiteres möglich ("Drop-In Fuel"); keine Anpassungsnotwendigkeiten am Flugzeug und auf den Flughäfen
- → Hohes Potenzial zur Minderung der Klimawirkung (bis zu 90 % CO₂ und weitere Minderung bestimmter nicht-CO₂-Effekte)

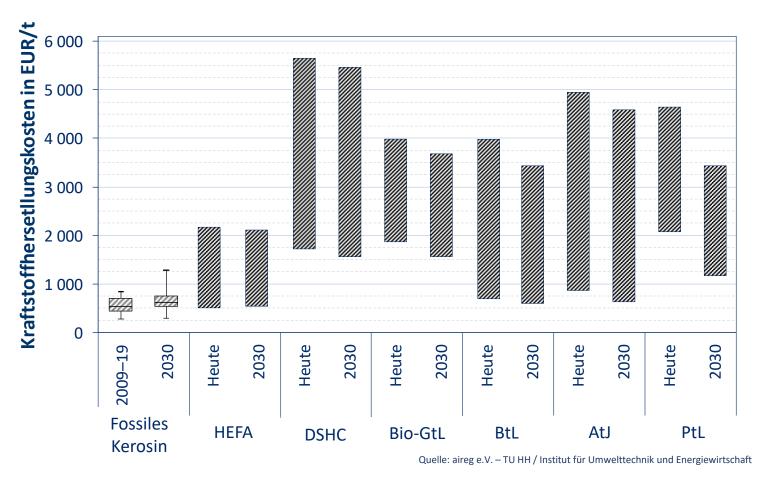
Schwächen:

- → Großtechnische Verfügbarkeit von nicht-fossilem CO₂ ist derzeit auf biogene Quellen (z.B., Biogasanlagen) begrenzt; Direct-Air-Capture Verfahren sind noch in der Entwicklung
 - → Hohe Bereitstellungs- / Treibstoffkosten beispielsweise im Vergleich zu HEFA-Kerosin
- → PtL-Anlagen sind heute noch im Labor- und Pilotmaßstab; eine großtechnische Umsetzung steht noch aus

PtL-Flugkraftstoffe Strategische Bewertung

Chancen:

- → Potenzial zur effizienten Speicherung von elektrischer Energie aus fluktuierenden erneuerbaren Quellen
 - → Potenziell hohes Kostensenkungspotenzial durch innovative Prozesse, optimierte Systemintegration und großtechnische Skalierung
- → Erhebliches Marktpotenzial für den nationalen und internationalen Anlagenbau


Herausforderungen:

- → Erprobung einer großtechnischen industriellen Produktion steht noch aus
- → Einige Prozesskomponenten (z. B., Reverse-Wasser-Gas-Shift Reaktion) wurden noch nicht in einem großindustriellen Maßstab demonstriert
- → Kostensenkungspotenzial stark abhängig von Innovationsdynamik und der globalen Marktentwicklung

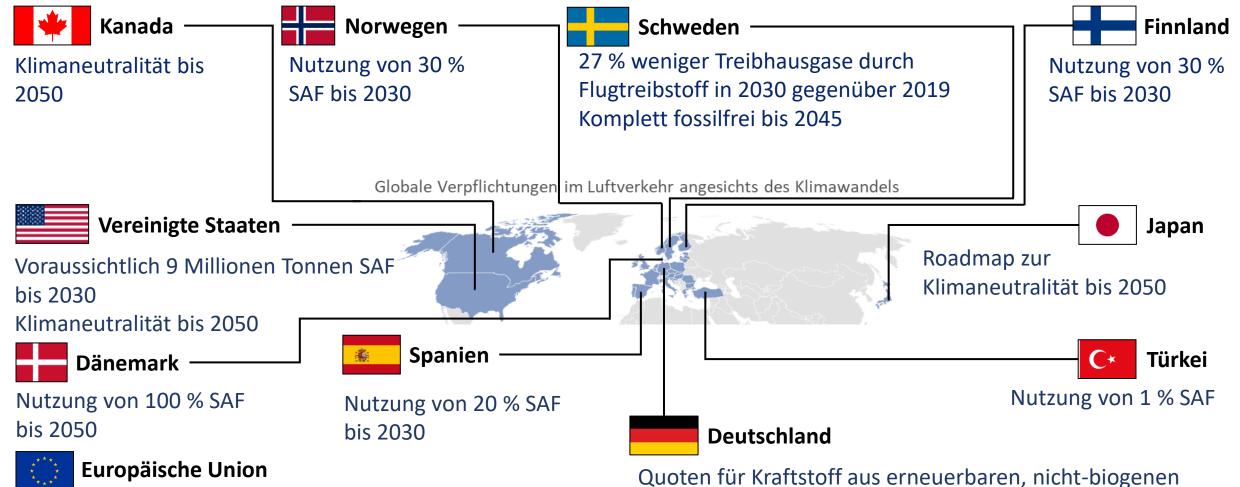
Quelle: aireg e.V. / TUHH (2023): Ptl Factsheet

SAF-Preis bleibt mittelfristig hoch auf Grund der Herstellungskosten

- Erneuerbare Flugkraftstoffe sind gegenüber fossilem Kerosin bisher und auch zukünftig weiterhin teurer, wodurch ihr Markteintritt stark beeinträchtigt ist.
- Kostensenkung durch Innovation und Scaling der gesamten Wertschöpfungskette
- Preisparität kann durch staatliche Anreizprogramme eher erreicht werden

Roadmap zur Entwicklung und Einführung nachhaltiger Flugkraftstoffe

- Von aireg-Mitgliedern entwickelte Roadmap mit dem Ziel, Maßnahmen und Anreize zur Herstellung eines signifikanten Nutzungsanteils nachhaltiger Kraftstoffe im Flugverkehr vorzustellen
- Die Roadmap zeigt einen möglichen Entwicklungspfad auf unter Berücksichtigung technologischer, ökologischer, ökonomischer und regulatorischer Rahmenbedingungen und Erfordernisse
- Die Roadmap umfasst
 - Aufbau einer semi-industriellen Demonstrationsanlage
 - Forschung, Entwicklung und Integration entsprechender
 Herstellungstechnologien
 - Meilensteine zur technologischen Umsetzung
 - Regulatorische und unterstützende Maßnahmen
- Mit der Roadmap bieten die aireg-Mitglieder der Politik auf Bundes- sowie Länderebene und Stakeholdern aus Industrie, Wirtschaft und Wissenschaft die Zusammenarbeit an, um die dringend erforderliche Markteinführung und den Produktionshochlauf von SAF zu beschleunigen


Roadmap zur Entwicklung und Einführung nachhaltiger Flugkraftstoffe

	<u> </u>		
	Heute	2030	Langfristig (>2050)
F&E	Etablierung eines SAF- Zulas Demonstrationszentrums Untersuchung / Erschließung unterschiedlicher H ₂ /CO ₂ -Quellen / - Bereitstellungsketten	sung neuer SAF unterstützen Erforschung von "near drop-in" Kraftstoffen Upscaling neuer Technologien Logistikketten / Infrastruktur optimieren	fverkehr
Technologische Entwicklung & Umsetzung	Bau und Betrieb SAF-Anlage in Deutschland Bau und Betrieb PtL- Demonstrationsanlage(n)	n Wirtschaftlicher Anlagenbetrieb Bau und Betrieb industrieller PtL-Anlage(n) in Deutschland	Kraftstoffe im Lul
Regulatorische Maßnahmen		Mittel- und Langfristiger Vorrang Kraftstoffe für Luftfahrt THG-Minderungsquote innereuropäischer Absatz: 10 % in 2030 PtL-Subquot Anpassung Anrechnungsfaktoren für PtL/SAF in nationaler Umsetzung RED II	
Unterstützende Maßnahmen	Frühzeitiger Austausch mit nationalen / internationalen NGO's / Verbänden Diskurs über langfristige Rolle von Biokraftstoffen anstoßen	Einrichtung einer Informationsstelle zum Gesetzgebungsrahmen für nachhaltige Flugkraftstoffe Marketingstrategie und Öffentlichkeitsarbeit für Quoteneinführung Entwickeln	Signif

Auswahl Verpflichtungen: Klimaschutz in der Luftfahrt verschiedener Staaten

Reduktion um 55 % der Treibhausgasemissionen gegenüber 1990 bis 2030

Nutzung von 6 % SAF in 2030 und 70 % SAF in 2050 in davon 1,2 % E-Fuels in 2030 und 35 % E-Fuels in 2050 (ReFuelEU)

Quellen: 0,5 % in 2026, 1 % in 2028, 2 % in 2030

Quoten für Reduzierung THG-Emissionen (Auswahl): 10,5 %

in 2025, 25 % in 2030

SAF-Anstrengungen Airlines

5 % SAF bis 2030, ca. 22.000 Tonnen SAF seit 2016, Reduzierung der THG-Emission ggü. 2019 um 50 % bis 2035, 100 Millionen USD-Fond zur Förderung von SAF, SBTi-validiert

5% - 10% SAF bis 2030, Reduzierung der CO_2 -Intensität (CO_2 -Emissionen protransportierten Tonnenkilometer) bis 2030 ggü. 2019 um 30%, SBTi-validiert 10% SAF bis 2030, mind. 1% SAF auf jedem Flug von Frankreich und den Niederlanden, CO_2 -Emissions-Reduzierung bis 2030 pro RPK um 30 % ggü. 2019, SBTi-validiert

10 % SAF bis 2030, erste transatlantischer Flug mit 100 % SAF, 40 % Netto-Reduktion von CO₂-Emissionen bis 2040

10 % SAF bis 2030, 70 % SAF bis 2050 bei IAG

30 % SAF bis 2030 im Bereich Luftfracht, SBTi-validiert

10 % SAF bis 2030, SBTi-validiert

12,5 % SAF bis 2030, davon sind bereits 70 % vertraglich abgesichert, 26 % geringere $\rm CO_2$ -Belastung ggü. 2019 im Jahr 2031, Weg zur Klimaneutralität wird gerade STBI-validiert

17 % SAF bis 2030, Reduzierung der CO₂-Intensität bis 2035 um 40 % ggü. 2019 (nach Einschätzung von SBTi), eigene Buchungsklassen mit 50 % SAF für jeweiligen Flug

Vielen Dank für Ihr Interesse!

Kontakt:

Melanie Form

Mitglied des Vorstands Geschäftsführerin

kontakt@aireg.de

aireg e.V. – Aviation Initiative for Renewable Energy in Germany

Bundesratufer 10 10555 Berlin

www.aireg.de

Bilder:

© Airbus, A. Doumenjou & S. Ramadier

